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Abstract

This article reports a relaxation study in an oriented system containing spin 3/2 nuclei using quantum state tomography (QST). The
use of QST allowed evaluating the time evolution of all density matrix elements starting from several initial states. Using an appropriated
treatment based on the Redfield theory, the relaxation rate of each density matrix element was measured and the reduced spectral den-
sities that describe the system relaxation were determined. All the experimental data could be well described assuming pure quadrupolar
relaxation and reduced spectral densities corresponding to a superposition of slow and fast motions. The data were also analyzed in the
context of Quantum Information Processing, where the coherence loss of each qubit of the system was determined using the partial trace
operation.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Nuclear Magnetic Resonance (NMR) has been success-
fully used as an experimental method for many Quantum
Information Processing (QIP) implementations [1,2]. This
includes the implementation of many quantum algorithms
[3–8], execution of quantum simulations [9–11], and also
testing of quantum protocols [12]. While n coupled spin
1/2 nuclei, either in solid or liquid state, have been exten-
sively used to process the information of an n qubit system,
single quadrupolar nuclei with spin I > 1=2 have been used
to process the information of a log2ð2I þ 1Þ equivalent
qubit system. In both cases, an important aspect concern-
ing QIP applications is the maintenance of the quantum
state coherence for long times compared with the duration
of the desired quantum operations. In this sense, the loss of
coherence and the energy dissipation by the spin quantum
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system (i.e., relaxation) play a major role. Recently, theo-
retical as well as experimental studies about the nature of
the spin-environment coupling have been reported
[13–21]. Of course, NMR relaxation is a well known phe-
nomenon and its basis was established in early reports
[22–26]. Regarding quadrupolar relaxation, one can point
out the pioneer study published by Pople et al. [26], that
explained the strong line broadening observed in I > 1=2
spin systems using quadrupolar relaxation. Following this
idea, many other theoretical treatments about the relaxa-
tion phenomena in quadrupolar systems were presented
[27–29]. More sophisticated relaxation studies in quadru-
polar systems were performed for anysotropic media using
two-dimensional quadrupolar spectroscopy [30] and multi-
ple quantum spectroscopy [31]. Recent reviews about relax-
ation processes have also been published for I ¼ 3=2
systems [32,33]. In these studies, the characterization of
the relaxation process is performed by means of reduced
spectral densities, which contain the information about
the local field fluctuations [34], and, thus, are the main
parameters to be determined. Despite the NMR relaxation
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theory as well as its implications are well known, there are
only few studies in the context of Quantum Computing and
Quantum Information [13–17,35–37]. Thus, a straight
question that could be drawn is how the NMR relaxation
parameters correlate with the decoherence times of the
individual NMR qubits. Another point concerns the ability
that a quadrupolar system has to emulate the relaxation of
other quantum systems. In both cases, density matrix
tomography, also known as Quantum State Tomography
(QST), is very useful because it makes possible to deter-
mine independently all density matrix elements, so that
their relaxations can be monitored individually. In this arti-
cle we present a relaxation study of a spin 3/2 quadrupolar
system in the context of QIP. For that, several pseudo-pure
states were prepared using numerically optimized pulses
known as Strongly Modulated Pulses (SMP) [38,39]. More
specifically, we experimentally followed the time evolution
of the pseudo-pure states corresponding to j00i, j01i, j10i,
j11i, 1

2
ðj00i þ j01i þ j10i þ j11iÞ, and 1ffiffi

2
p ðj00i þ j11iÞ.

Then, by fitting the experimental data using a set of equa-
tions based on the Redfield theory [25], the reduced spec-
tral densities were determined. The obtained spectral
densities are consistent with a previously reported relaxa-
tion model for nematic liquid crystals [54,56] that accounts
for the presence of a slow and fast motion components. In
the last part of the article, the questions concerning the
qubit relaxation in a spin 3/2 quadrupolar system emulat-
ing the relaxation of a spin 1/2 is addressed.

2. Theory

The Hamiltonian that describes a I > 1=2 spin system in
the laboratory frame, considering Zeeman and first order
quadrupolar interaction can be expressed as [40]:

H ¼ ��hxLIz þ
�hxQ

6
3I2

z � IðI þ 1Þ
� �

: ð1Þ

The first term describes the Zeeman interaction and the
second the static first order quadrupolar interaction (with
quadrupolar frequency of xQ). Hence, for nuclear spin
I ¼ 3=2 the eigenvectors of the Zeeman plus quadrupolar
terms are j3=2i, j1=2i, j � 1=2i, and j � 3=2i, which can
be labeled as j00i, j01i, j10i, and j11i, corresponding to a
two-qubit system (see Fig. 1). For describing the relaxation
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Fig. 1. 23Na NMR spectrum of the oriented liquid crystal sample (Sodium
Dodecyl Sulfate, SDS) and the corresponding energy diagram with the
quantum state labeling.
one needs to consider a random coupling of this system
with a relaxation reservoir. For example, assuming pure
quadrupolar relaxation, the Hamiltonian that describes
this coupling can be explicitly written in a general form
as [40]:

H1ðtÞ ¼
Xm¼þ2

m¼�2

F ðmÞ½aðtÞ; bðtÞ; cðtÞ�AðmÞ; ð2Þ

Að0Þ ¼ ½3I2
z � IðI þ 1Þ�; ð3Þ

Að�1Þ ¼
ffiffiffi
6
p

2
½I zI� þ I�Iz�; ð4Þ

Að�2Þ ¼
ffiffiffi
6
p

2
I2
�; ð5Þ

where the lattice functions F ðmÞ depend on the elements of
the electric field gradient tensor. aðtÞ; bðtÞ, and cðtÞ stand
for the Euler angles relating the molecule/nucleus orienta-
tion with respects to the laboratory frame [40]. The system
dynamics under the presence of relaxation processes can be
described using the Redfield formalism [25,40] for the re-
duced density matrix qaa0 . Here the term reduced density
matrix refers to the density matrix without considering
the term proportional to the identity in its operator
expansion:

qfull
aa0 ¼

1

Z
1þ 1

kBT
qaa0 ; ð6Þ

where Z is the partition function. Just for the sake of sim-
plicity from now on we will refer to the reduced density ma-
trix simply as density matrix qaa0 . According to the Redfield
theory, the time evolution of each element of qaa0 is given
by the solution of the following differential equation:

oqaa0 ðtÞ
ot

¼
X
bb0

Rbb0

aa0 e
iðxa�xbþxb0 �xa0 Þtqbb0 ðtÞ; ð7Þ

where Rbb0

aa0 represents the element aa0bb0 of the relaxation
superoperator with a; a0; b; b0 ¼ 0; 1; 2; 3 and xa, xa0 , xb,
xb0 correspond to eigenvalues of the Zeeman plus quadru-
polar Hamiltonians [40,25]. The explicit relaxation super-
operator depends on the specific interactions that drive
the relaxation process and also on the correlation times
of the local field fluctuations. This can be taken into ac-
count by writing the corresponding relaxation matrix in
terms of a set of reduced spectral densities and coupling
strengths, whose the explicit expressions depend on the
interaction motion model that drives the relaxation, i.e.,
the relaxation mechanism. Although the main relaxation
mechanism for spins I > 1=2 is usually the quadrupolar
interaction, in many cases dipolar relaxation cannot be ne-
glected. However, in systems where the quadrupolar inter-
action is much stronger than the dipolar couplings, the
former can be assumed as the single relaxation mechanism.
This is the case of the present article, where the quadrupo-
lar frequency mQ ¼ xQ

2p (� 17 kHz, estimated from the satel-
lite lines) is much higher than the dipolar fields (< 100 Hz,
estimated from the line width of the central transition) (see
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Fig. 1). There are many reports considering pure quadru-
polar relaxation, i.e., assuming that the loss of coherence
and energy dissipation by the spin system are exclusively
due to electric field gradient fluctuations [41,27,40,42]. In
the case of pure quadrupolar relaxation in spin 3/2 systems,
jxQj << jxLj, the relaxation can be described by three re-
duced spectral densities at the Larmor frequency: J 0, J 1,
and J 2 [43]. These reduced spectral densities depend on spe-
cific models for the molecular motions that induced the
field fluctuations. Meanwhile we will just assume pure
quadrupolar relaxation, leaving the discussion on the eval-
uation of the reduced spectral densities and specific relaxa-
tion model for the next sections. In [41] the relaxation
matrices for all quantum coherences were derived consider-
ing that the quadrupolar interaction, represented by the
Hamiltonian shown in Eq. (2), was the only relaxation
mechanism. A further development was presented in refer-
ence [43] that shows a derivation of the expressions that de-
scribe the relaxation dynamics of the density elements
obtained by diagonalization of the relaxation matrices. It
was shown for pure quadrupolar relaxation that the solu-
tion of the Redfield Eq. (7) with the three above reduced
spectral densities can be summarized as:

q01ðtÞ ¼
1

2
½q01ðt0Þ þ q23ðt0Þ

þ ðq01ðt0Þ � q23ðt0ÞÞe�2CJ 2ðt�t0Þ�e�CðJ0þJ1Þðt�t0Þ; ð8Þ

q23ðtÞ ¼
1

2
½q01ðt0Þ þ q23ðt0Þ

� ðq01ðt0Þ � q23ðt0ÞÞe�2CJ 2ðt�t0Þ�e�CðJ0þJ1Þðt�t0Þ; ð9Þ

q02ðtÞ ¼
1

2
½q02ðt0Þ þ q13ðt0Þ

þ ðq02ðt0Þ � q13ðt0ÞÞe�2CJ 1ðt�t0Þ�e�CðJ0þJ2Þðt�t0Þ; ð10Þ

q13ðtÞ ¼
1

2
½q02ðt0Þ þ q13ðt0Þ

� ðq02ðt0Þ � q13ðt0ÞÞe�2CJ 1ðt�t0Þ�e�CðJ0þJ2Þðt�t0Þ; ð11Þ
q12ðtÞ ¼ q12ðt0Þe�CðJ1þJ2Þðt�t0Þ; ð12Þ
q03ðtÞ ¼ q03ðt0Þe�CðJ1þJ2Þðt�t0Þ; ð13Þ

q00ðtÞ ¼ 3p � 1

4
½R0

1e�2CðJ1þJ2Þðt�t0Þ

� R0
2e�2CJ 2ðt�t0Þ � R0

3e�2CJ1ðt�t0Þ�; ð14Þ

q11ðtÞ ¼ p þ 1

4
½R0

1e�2CðJ1þJ2Þðt�t0Þ

þ R0
2e�2CJ 2ðt�t0Þ � R0

3e�2CJ1ðt�t0Þ�; ð15Þ

q22ðtÞ ¼ �p þ 1

4
½R0

1e�2CðJ1þJ2Þðt�t0Þ

� R0
2e�2CJ 2ðt�t0Þ þ R0

3e�2CJ1ðt�t0Þ�; ð16Þ

q33ðtÞ ¼ �3p � 1

4
½R0

1e�2CðJ1þJ2Þðt�t0Þ

þ R0
2e�2CJ 2ðt�t0Þ þ R0

3e�2CJ1ðt�t0Þ�; ð17Þ

where p ¼ hijqeqjii=ð2mÞ, with m being the corresponding
Iz eigenvalues and the superscript eq denotes the
thermal equilibrium state. qij’s are the density matrix
elements with the index values i; j ¼ 0; 1; 2; 3 correspond-
ing to the states j3=2i, j1=2i, j � 1=2i, and j � 3=2i,
respectively. The parameter C is a proportionality coef-
ficient that depends on the quadrupolar coupling con-
stant as [43]:

C ¼
v2

Q

40
1þ

g2
Q

3

 !
; vQ ¼

e2qQ
�h

ð18Þ

Again, vQ is the quadrupole coupling constant and gQ is the
asymmetry parameter of the quadrupolar interaction.

2.1. Determination of the reduced spectral densities from the

relaxation data

QST allows experimentally following the evolution of all
the density matrix elements. Thus, by fitting the experimen-
tal data with Eqs. (8)–(17) it is possible to determine the
reduced spectral densities. However, the inconvenience of
directly using such equations is that most of them show
multi-exponential decay, which can lead to ambiguous fit-
tings. Fortunately, Eqs. (8)–(17) can be combined to pro-
vide single-exponential functions, i.e.,

q01ðtÞ þ q23 tð Þ ¼ A1ea1t; ð19Þ
q02ðtÞ þ q13 tð Þ ¼ A2ea2t; ð20Þ
q12ðtÞ ¼ A3ea3t; ð21Þ
q03ðtÞ ¼ A4ea3t; ð22Þ

which can be linearized to give the following J n dependent
coefficients,

a1 ¼ �CðJ 0 þ J 1Þ; ð23Þ
a2 ¼ �CðJ 0 þ J 2Þ; ð24Þ
a3 ¼ �CðJ 1 þ J 2Þ: ð25Þ

The amplitudes are given by A1 ¼ q0
01 þ q0

23,
A2 ¼ q0

02 þ q0
13, A3 ¼ q0

12, and A4 ¼ q0
03.

An analogous treatment can be used for the diagonal
elements, which gives:

q00ðtÞ þ q11ðtÞ � q22ðtÞ � q33ðtÞ ¼ 2p þ R0
2e�2CJ2t; ð26Þ

� q00ðtÞ þ q11ðtÞ þ q22ðtÞ � q33ðtÞ ¼ R0
1e�2CðJ1þJ2Þt; ð27Þ

q00ðtÞ � q11ðtÞ þ q22ðtÞ � q33ðtÞ ¼ p þ R0
3e�2CJ1t: ð28Þ

Therefore, if the quadrupolar parameters vQ and gQ are
known, the reduced spectral densities J 0, J 1, and J 2 can be
independently found from Eqs. (19)–(22). Furthermore, the
J 1 and J 2 values can be compared with that ones obtained
from (26)–(28) to check the consistency of the experimental
data with the adopted relaxation model.

3. Experiments

3.1. Experimental procedures

The 23Na NMR experiments were performed using a
magnetic field oriented lyotropic liquid crystal system
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Fig. 3. Scheme of the pulse sequence used for probing the relaxation of
the individual density matrix elements. The initial states are prepared with
the SMP technique [38]. The state relaxation takes place during a variable
evolution period and, finally, a hard RF pulse with the correct phase
cycling and duration is applied to execute QST via coherence selection
[44].
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(Sodium Dodecyl Sulfate, SDS), using a 9.4 T—VARIAN
INOVA spectrometer. The sample composition was 21.3%
of SDS, 3.6% of decanol, and 75.1% of deuterium oxide
[54]. The quadrupolar coupling was found to be
(16700 ± 70) Hz at 24 �C. In the experiments that charac-
terized the relaxation of all elements of the density matrix,
a initial pseudo-pure state corresponding to superposition
state jsupi � 1

2
ðj00i þ j01i þ j10i þ j11iÞ was prepared

using the SMP technique [38,39,44]. In this case, all the
density matrix elements were measured using the QST
method via coherence selection [44]. In the experiments
that characterized only the relaxation of the diagonal den-
sity matrix elements, initial states that have populations
corresponding to the states j00i, j01i, j10i, j11i, and the
cat state jcati � 1ffiffi

2
p ðj00i þ j11iÞ were prepared. In this case,

the SMP optimizations and the tomography [44] were per-
formed just for the populations. The initial states popula-
tions and the full tomographed density matrix for the
state jsupi are shown in Fig. 2.

The basic experimental scheme shown in Fig. 3 consisted
of: a state preparation period performed with SMP; a var-
iable evolution period s where relaxation takes place; a
hard RF pulse with the correct phase cycling and duration
to execute QST via coherence selection [44]. For off-diago-
nal elements, a p pulse was added in the middle of the evo-
lution period to refocus the B0 field inhomogeneities.
Because quadrupolar evolution is not refocused by the p
e f
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Fig. 2. Experimental diagonal elements of the density matrices (popula-
tions) corresponding to the quantum states (a) j00i; (b) j01i; (c) j10i; (d)
j11i; and (e) jcati. (f) Experimental real part of the density matrix
corresponding to the state jsupi. Note that the density matrix shown are
only the part detected by NMR, i.e., the second term in the right side of
Eq. (6).
pulse, evolution periods multiple of 2p=xQ were used.
For diagonal elements, no p pulse was applied.

3.2. Experimental results

3.2.1. Quadrupolar parameters in lyotropic liquid crystals

As described in the previous section, in order to obtain the
reduced spectral densities via QST it is necessary to know the
constant C, which is defined in terms of the quadrupolar cou-
pling constant vQ and the asymmetry parameter gQ [53]. For
nematic liquid crystals such as used in this article (SDS),
these parameters can be obtained from the quadrupolar
splitting mQ ¼ xQ

2p if the exact nematic phase and the orienta-
tional order parameter are known [54]. For the sample com-
position used here, the liquid crystal may be in two uniaxial
nematic phases (see the phase diagram in reference [54] and
the sample composition in the experimental section), named
calamitic (NC) and discotic (N D). Since both phases are
uniaxially orientated one can assume gQ � 0, as confirmed
by observing the NMR spectra as a function of the orienta-
tion in references [55,54]. Note that since gQ is only used to
calculate the C constant, if gQ 6¼ 0 the C value can be under-
estimated at most by a factor of 1/3. For gQ < 0:5, which is
mostly like the case of our system, the underestimation factor
is smaller than 0.08, which will have little effect in the deter-
mination of the spectral densities. The nematic phase can be
identified by observing the evolution of the 23Na NMR spec-
tra [54] as the macroscopic orientation of the sample
increases due to the presence of the NMR magnetic field.
Immediately after the sample is placed in the magnetic field,
the 23Na spectra has a characteristic powder line shapes, but
show a progressive evolution from that to the three line spec-
tra expected for an oriented liquid crystal (Fig. 1). In the
present case the total time of this transition was typically
1 h. For uniaxially oriented liquid crystals the quadrupolar
splitting mQ is given by [54]:

mQ ¼
1

8p
ð3cos2hLD � 1ÞSDN�vQ; ð29Þ

where hLD is the angle between the local nematic director
with the magnetic field, �vQ is the residual quadrupolar cou-
pling constant (in rad/s) and SDN is an order parameter
that depends on the shape and order of the micelles in



Table 1
Reduced spectral densities obtained from the relaxation of the density
matrix diagonal elements (populations column) and from the off-diagonal
elements (coherences column) of the superposition states

Coherences Populations Average

J0ð10�9
sÞ 14� 1 — 14� 1

J1ð10�9
sÞ 4� 1 3:8� 0:4 3:9� 0:7

J2ð10�9
sÞ 3:4� 0:5 3:6� 0:3 3:5� 0:4
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the nematic liquid crystal [54]. In the NC phase the director
is aligned with the magnetic field (hLD ¼ 0). Thus, for a NC

phase, the quadrupolar splitting in the oriented sample in-
creases twice from its initial value measured in the powder
pattern. In contrast, since for the N D phase hLD ¼ 90o, mQ

does not change as the sample orients in the magnetic field
[54]. In our case the expected increase in mQ was observed,
so one can assign the sample as being in the N C phase.
However, the determination of �vQ also requires the knowl-
edge of SDN.The simultaneous determination of �vQ and SDN

can be done by measuring mQ for different orientations of
the director relative to the magnetic field. This has been al-
ready done in reference [54] where it was found that
SDN ¼ �0:30� 0:02 for the NC phase at 24 �C. Since in
our 23Na NMR spectrum at 24 �C mQ ¼ ð16700� 70Þ Hz,
we found vQ ¼ ð�7:0� 0:5Þ � 105 rad/s. Hence, using Eq.
(18) one find C ¼ ð1:2� 0:1Þ � 1010s�2.

3.2.2. Evaluation of the reduced spectral densities

In order to monitor the coherence loss of the off-diago-
nal density matrix elements, we experimentally determined
the time evolution of each element starting from the uni-
form superposition of states, jsupi (see Fig. 2). The exper-
imental data were combined according to (19)–(22) and
fitted by exponential functions to determine the coefficients
a1, a2, and a3. The combined experimental curves and the
corresponding fittings are shown in Fig. 4. The reduced
spectral densities Jn obtained by the adjust of Eqs. (19)–
(22) and using C ¼ ð1:2� 0:1Þ � 1010

s�2 are shown in the
coherences column of Table 1. The same procedure was
used to find J 1 and J 2 via the populations data using
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Fig. 4. Combined density matrix elements starting from the jsupi state.
Experimental data (symbols) and corresponding fittings (solid lines). The
fittings were performed using Eqs. (19)–(22) and (26)–(28).
Eqs. (26)–(28), which gave the values in the populations col-
umn of Table 1. The lower errors in the populations column
is due to the fact that only Eqs. 26 and 28 were used to
evaluate the reduced spectral densities in this case. For
the superposition state, the Eq. (27) is almost constant
along the relaxation period, making it unappropriate to
give reasonable values for the reduced spectral densities.

Using the averaged reduced spectral densities and the
previous knowledge of the initial density matrix, one can
test the validity of the pure quadrupolar relaxation model
for describing the system decoherence by replacing these
values in Eqs. (8)–(17) and comparing with the experimen-
tal curves of Fig. 5.

The same procedure was performed for the populations
of all the other states shown in Fig. 2. However, since in
these cases only the diagonal elements need to be probed,
only the populations were optimized by the SMP technique
and tomographed (see Fig. 2). The reason for that was to
produce states with higher population differences in order
to minimize the fitting errors and enhance the multi-expo-
nential behavior of the populations relaxation. The
extracted reduced spectral densities are shown in Table 2.

Similarly as before, we used the reduced spectral densi-
ties, the initial density matrix, and Eqs. (14)–(17) to repro-
duce the experimental relaxation of the diagonal elements.
This is shown in Fig. 6 for populations corresponding to
the states j00i, j01i, j10i, j11i, and jcati. In all cases the
experimental behavior was well reproduced using Eqs.
(14)–(17).

By inspection of Eqs. (8)–(13), we can see that for all the
density matrix coherences the single-exponential decay is
always expected for an initial state like jsupi. This is due
to the equal amplitudes that enter in Eqs. (8)–(13) and can-
cel the exponential factor inside the brackets. However, as
in the present case J 0 > J 1 � J 2, even for an arbitrary ini-
tial state, a multi-exponential decay should be more easily
recognized for the populations than for the coherences, see
Fig. 6. In fact, this is a most fundamental behavior that can
be explained, via the Redfield theory, without assuming
any specific model for the relaxation mechanisms. In that
formalism, by using the secular approximation, i.e., assum-
ing that the internal interactions are much greater than the
relaxation rates, one can show that all cross-terms in Eq.
(7) can be neglected for the coherence elements, which gives
uncoupled differential equations with single-decay expo-
nential solutions. This approximation can be applied to
our experimental system because the characteristic frequen-
cies of the internal interactions, xL and xQ, are much
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Table 2
Reduced spectral densities obtained from the relaxation of the density matrix diagonal elements of the pseudo-pure states

Parameters Pseudo-pure states Average

j00i j01i j10i j11i jcati jsupi
J1 ð�10�9

sÞ 3:8� 0:7 3:1� 0:3 3:5� 0:7 3:1� 0:3 3:2� 0:3 3:8� 0:4 3:4� 0:4
J2 ð�10�9

sÞ 3:6� 0:3 3:6� 0:3 3:7� 0:3 3:7� 0:3 3:8� 0:3 3:6� 0:3 3:7� 0:3
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greater than the relaxation rates. The fact that our SDS
system presents this behavior (note that the secular
approach was not assumed a priori) indicates that the
relaxation is mostly defined by the local quadrupolar cou-
pling, which is actually consistent given the dilution of the
23Na ions in SDS. This conclusion is based on the fact that
in a multi-spin system cross-terms would be certainly
important for the relaxation [57]. The use of the secular
approximation also explains why we have optimized just
the diagonal elements of the basis states, disregarding their
coherence values. Since, from the secular approximation,
the populations relax independently of the coherences,
the last ones can assume any arbitrary value.

Therefore, the use of QST made possible the experimen-
tal characterization of the relaxation of all density matrix
elements in a spin 3/2 quadrupolar system. The proper
modelling using the Redfield theory allowed determining
the relaxation parameters with good accuracy.
3.2.3. Relaxation model for the SDS nematic liquid crystal

Once the reduced spectral densities were determined, it
is important to discuss wether the obtained values are con-
sistent with a specific relaxation model. The relaxation of
the N C nematic phase of the SDS liquid crystal was earlier
characterized using standard relaxation measurements
[56,54]. In these references the relaxation was described
using the so called two-step models that assume that the
motions are composed by a fast component in the extreme
narrowing regime and a slow component, so the total
reduced spectral densities can be written as [55,56]:

J n ¼ ð1� S2ÞJ f
n þ S2J s

n ð30Þ

J n ¼ 2ð1� S2Þsf
C þ S2 ss

C

1þ ðnxss
CÞ

2
; ð31Þ

where S is the order parameter to account for the system
anisotropy. Note that for a NC phase it can be taken as
the same as SDN. J f

n is the reduced spectral density for
the local fast motion, which is assumed to be isotropic be-
cause the ionic exchange inside the liquid crystal micelle,
and J s

n is the reduced spectral density for the slow motion
ascribed to the motion of the entire micelle and to surfac-
tant diffusion over the curved micellar surface [56]. The first
feature to be noticed is that, without assuming any specific
model for the relaxation mechanism (we just assumed pure
quadrupolar relaxation), we found J 0 > J 1 � J 2. As stated
in reference [52], this behavior is expected when free ions
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exchange with a small population of ions bound to
macromolecules. Thus, this result shows by itself that the
two-step model is appropriated for the SDS system. The
evaluation of the correlation times ss

C and sf
C can be done

by noting that:

J 0 � J 1 ¼ S2
DNsS

C � S2
DN

ss
C

1þ ðxss
CÞ

2
; ð32Þ

J 0 � J 2 ¼ S2
DNsS

C � S2
DN

ss
C

1þ ð2xss
CÞ

2
: ð33Þ

Hence, these combinations provide equations that
depend only on ss

C. Therefore, using the reduced spectral
density values shown in Table 1, S ¼ �0:3, and Eq. (32)
one find ss

C ¼ ð120� 10Þ ns. Replacing ss
C in Eq. (30) one

obtain sf
C ¼ ð1:9� 0:9Þ ns with n ¼ 0. Thus, the individual

evaluation of J 0, J 1, and J 2, provided by the method
described in this article, can be interpreted as a way of sep-
arating the slow and the fast motion contributions to the
relaxation. It is worth mention that the main aim here
was to show that the obtained values for the reduced spec-
tral densities were consistent with a previous model
adopted for the 23Na relaxation in SDS. A complete relax-
ation study must certainly involve measurements as a func-
tion of temperature and orientation, such as done in
reference [54]. However, all these experiments can be done
using QST, with the advantage of a probably less ambigu-
ous estimation of the reduced spectral densities. The
method can be extended to other spin values and also to
take into account the dipolar contribution to the relaxation
based on references [52,57].
4. Coherence loss of a two-qubit system

In the previous sections we described how to determine
the reduced spectral densities by following the system evo-
lution of the quantum states until the thermal equilibrium
is reached. In this section we continue to explore that, but
now from the Quantum Computing point of view, in a
sense that a quadrupolar nuclei (I ¼ 3=2), under a mag-
netic field and electric field gradient, may emulate a two-
qubit system [35,45–51]. Since we obtained the full density
matrix at several time intervals during the relaxation pro-
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cess, it is possible to study the quantum state of each qubit
separately using the partial trace operation [2]. By doing so,
the density matrices of the individual qubits become,
qAðtÞ ¼
q00ðtÞ þ q11ðtÞ q02ðtÞ þ q13ðtÞ
qy02ðtÞ þ qy13ðtÞ q22ðtÞ þ q33ðtÞ

� �
; ð34Þ

qBðtÞ ¼
q00ðtÞ þ q22ðtÞ q01ðtÞ þ q23ðtÞ
qy01ðtÞ þ qy23ðtÞ q11ðtÞ þ q33ðtÞ

� �
; ð35Þ

As it may be seen, while the double quantum coher-
ences of the original density matrix determine the off-
diagonal elements of the first qubit density matrix
(labeled as A, qAðtÞ), the original single quantum coher-
ences define the second qubit density matrix off-diagonal
elements (labeled as B, qBðtÞ). Note also that the single
quantum q12ðtÞ and the triple quantum q03ðtÞ coherences
do not contribute to the qubits density matrix. This
shows, as expected, that entanglement effects cannot be
detected only by the observation of the individual qubits.
Rewriting Eqs. (34) and (35) in terms of Eqs. (8)–(17) we
find:
Table 3
Theoretical expressions for the density matrices elements of the first qubit
considering a spin 1/2 system (r) and a quadrupolar spin 3/2 system (A)

Spin r Qubit A

Transverse relaxation
rate

2ðu1 þ u2Þ CðJ 0 þ J 2Þ

0 0y 0 0 0y 0y
qAðtÞ¼
qeq

00þqeq
11þ 1

2
ðR0

2e�2CJ2tÞ q0
02þq0

13

� �
e�CðJ0þJ2Þt

ðq0y
02þq0y

13Þe�CðJ0þJ2Þt qeq
22þqeq

33� 1
2
ðR0

2e�2CJ2tÞ

" #
;

ð36Þ

qBðtÞ¼
qeq

00þqeq
22þ 1

2
ðR0

3e�2CJ1tÞ ðq0
01þq0

23Þe�CðJ0þJ1Þt

ðq0y
01þq0y

23Þe�CðJ0þJ1Þt qeq
11þqeq

33� 1
2
ðR0

3e�2CJ1tÞ

" #
:

ð37Þ

Therefore, all elements of the density matrix of both
qubits show single-exponential decays. The diagonal ele-
ments of qubits A and B depend on the J 2 and J 1 reduced
spectral densities, respectively. Furthermore, the off-diag-
onal elements decay with different rates for each qubit:
CðJ 0 þ J 2Þ and CðJ 0 þ J 1Þ for qubits A and B,
respectively.

The magnetization corresponding to the k component
of the angular momentum operator (I ¼ 1=2) is given by
[40]:

MA;B
k ðtÞ ¼ Ikh i ¼

X
i

qA;BðtÞIk

� �
ii
: ð38Þ

Then, considering the quadrupolar system as a two-
qubit system, the individual magnetization for each qubit
can be written as:
Real part of the
transverse
component

ðr12 þ r12Þ ðq02 þ q13 þ q02 þ q13Þ

Imaginary part of the
transverse
component

ðr0
12 � r0y

12Þ ðq0
02 þ q0

13 � q0y
02 � q0y

13Þ

Longitudinal relaxation
rate

k1, k2 2CJ2

Longitudinal
component

Arek1ðt�t0Þ þ Brek2ðt�t0Þ R0
2e�2CJ2ðt�t0Þ

Equilibrium state value ðreq
11 � req

22Þ ðqeq
00 þ qeq

11 � qeq
22 � qeq

33Þ
MA
x ðtÞ ¼ Reðq0

02 þ q0
13Þe�CðJ0þJ2Þt; ð39Þ

MA
y ðtÞ ¼ Imðq0

02 þ q0
13Þe�CðJ0þJ2Þt; ð40Þ

MA
z ðtÞ ¼ 2p þ R0

2e�2CJ 2t: ð41Þ
MB

x ðtÞ ¼ Reðq0
01 þ q0

23Þe�CðJ0þJ1Þt; ð42Þ
MB

y ðtÞ ¼ Imðq0
01 þ q0

23Þe�CðJ0þJ1Þt; ð43Þ
MB

z ðtÞ ¼ p þ R0
3e�2CJ 1t: ð44Þ
Thus, it is possible to draw two main conclusions:

- The decoherence rates for the two qubits may be differ-
ent, being CðJ 0 þ J 2Þ for qubit A and CðJ 0 þ J 1Þ for
qubit B. However, in our specific case, where
½CðJ 0 þ J 2Þ� ¼ ½CðJ 0 þ J 1Þ� ¼ ð210� 10Þs�1, this differ-
ence could not be detected.

- The relaxation rates for the diagonal elements are also
different upon distinct qubits. While it is ð2CJ 2Þ�1 for
qubit A, (ð2CJ 2Þ�1 ¼ ð90� 10Þs�1 in our system), for
qubit B it is given by ð2CJÞ�1, ð2CJ 2Þ�1 ¼ ð80� 10Þs�1

in our system).

In a system of two coupled spin 1/2 the qubits can be
directly identified as individual nuclear spins. Thus, the
magnetization associated with each qubit can also be
assigned as the magnetization of the individual spin. The
relaxation of two coupled spins 1/2 (named spin r and g)
was early described in the seminal article of Solomon
[24]. In this article he showed that the decay of the trans-
verse magnetization of both spins are exponential with
decoherence rates given by 2ðu1 þ u2Þ for spin r and
2ðu01 þ u2Þ for spin g, see Table 3. u1, u2, and u01 are related
with the proper reduced spectral densities according to ref-
erence [24]. This behavior is perfectly emulated by the
quadrupolar spin 3/2 system, where the decay of the trans-
verse magnetization of the qubits is also exponential and
given by CðJ 0 þ J 2Þ and CðJ 0 þ J 1Þ, respectively. However,
as shown in Table 3, for the spin 1/2 system the recovery of
the longitudinal magnetization is biexponential, which is
not the same case for the quadrupolar system, where purely
exponential decay is observed for both qubits. Therefore,
despite the quadrupolar spin 3/2 can emulated the decoher-
ence of the spin 1/2 system, it cannot emulate completely
the relaxation of the system (see Table 4).

5. Conclusions

In this article we have analyzed the relaxation of a spin
3/2 quadrupolar system using QST. From the experimen-
tally determined evolution of the density matrices of sev-



Table 4
Theoretical expressions for the density matrices elements of the second
qubit considering a couple spin 1/2 system (g), a quadrupolar spin 3/2
system (B)

Spin g Qubit B

Transverse relaxation
rate

2ðu01 þ u2Þ CðJ0 þ J1Þ

Real part of the
transverse component

ðg0
12 þ g0y

12Þ ðq0
01 þ q0

23 þ q0y
01 þ q0y

23Þ

Imaginary part of the
transverse
component

ðg0
12 � g0y

12Þ ðq0
01 þ q0

23 � q0y
01 � q0y

23Þ

Longitudinal relaxation
rate

k1, k2 2CJ1

Longitudinal
component

Agek1ðt�t0Þ þ Bgek2ðt�t0Þ R0
3e�2CJ1ðt�t0Þ

Equilibrium state value ðgeq
11 � geq

22Þ ðqeq
00 þ qeq

22 � qeq
11 � qeq

33Þ
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eral initial states we obtained the reduced spectral densities
J k’s using the Redfield formalism and assuming pure quad-
rupolar relaxation. The obtained reduced spectral densities
were analyzed considering a two-step relaxation model that
assumes fast and slow relaxation components, whose the
corresponding relaxation times were determined. As usu-
ally found in liquid crystals, this two-step model is consis-
tent with the presence of free motion of the Na ions inside
de liquid crystal micelle and the slow component ascribed
to the motion of the entire micelle and to surfactant diffu-
sion over the curved micellar surface. Furthermore, consid-
ering the Quantum Information point of view that a spin 3/
2 system is equivalent to a two-qubit system, we character-
ized the relaxation of the individual qubits by applying the
partial trace operation on the original density matrices.
The theoretical equations showed that a qubit can loose
coherence faster than the other, in the same way as exper-
imentally observed by Tseng et al. [10] for spin half sys-
tems. However, for our experimental system, we found
J 1 � J 2, which implies equal relaxation times for the mag-
netization of both qubits. We also explored the possibility
of emulating the relaxation of other quantum systems using
the spin 3/2 NMR system. It was found that only the deco-
herence of the coupled spin 1/2 system can be properly
reproduced.
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